65 research outputs found

    A statistical analysis of cervical auscultation signals from adults with unsafe airway protection

    Get PDF
    Background: Aspiration, where food or liquid is allowed to enter the larynx during a swallow, is recognized as the most clinically salient feature of oropharyngeal dysphagia. This event can lead to short-term harm via airway obstruction or more long-term effects such as pneumonia. In order to non-invasively identify this event using high resolution cervical auscultation there is a need to characterize cervical auscultation signals from subjects with dysphagia who aspirate. Methods: In this study, we collected swallowing sound and vibration data from 76 adults (50 men, 26 women, mean age 62) who underwent a routine videofluoroscopy swallowing examination. The analysis was limited to swallows of liquid with either thin (<5 cps) or viscous (≈300 cps) consistency and was divided into those with deep laryngeal penetration or aspiration (unsafe airway protection), and those with either shallow or no laryngeal penetration (safe airway protection), using a standardized scale. After calculating a selection of time, frequency, and time-frequency features for each swallow, the safe and unsafe categories were compared using Wilcoxon rank-sum statistical tests. Results: Our analysis found that few of our chosen features varied in magnitude between safe and unsafe swallows with thin swallows demonstrating no statistical variation. We also supported our past findings with regard to the effects of sex and the presence or absence of stroke on cervical ausculation signals, but noticed certain discrepancies with regards to bolus viscosity. Conclusions: Overall, our results support the necessity of using multiple statistical features concurrently to identify laryngeal penetration of swallowed boluses in future work with high resolution cervical auscultation

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    Cognitive tasks and cerebral blood flow through anterior cerebral arteries: A study via functional transcranial Doppler ultrasound recordings

    Get PDF
    Background: Functional transcanial Doppler ultrasound (fTCD) is a convenient approach to examine cerebral blood flow velocity (CBFV) in major cerebral arteries. Methods: In this study, the anterior cerebral artery (ACA) was insonated on both sides, that is, right ACA (R-ACA) and left ACA (L-ACA). The envelope signals (the maximum velocity) and the raw signals were analyzed during cognitive processes, i.e. word-generation tasks, geometric tasks and resting state periods separating each task. Data which were collected from 20 healthy participants were used to investigate the changes and the hemispheric functioning while performing cognitive tasks. Signal characteristics were analyzed in time domain, frequency domain and time-frequency domain. Results: Significant results have been obtained through the use of both classic/modern methods (i.e. envelope/raw, time and frequency/information-theoretic and time-frequency domains). The frequency features extracted from the raw signals highlighted sex effects on cerebral blood flow which revealed distinct brain response during each process and during resting periods. In the time-frequency analysis, the distribution of wavelet energies on the envelope signals moved around the low frequencies during mental processes and did not experience any lateralization during cognitive tasks. Conclusions: Even if no lateralization effects were noticed during resting-state, verbal and geometric tasks, understanding CBFV in ACA during cognitive tasks could complement information extracted from cerebral blood flow in middle cerebral arteries during similar cognitive tasks (i.e. sex effects)

    Motor phenotype of decline in cognitive performance among community-dwellers without dementia: Population-based study and meta-analysis

    Get PDF
    Background: Decline in cognitive performance is associated with gait deterioration. Our objectives were: 1) to determine, from an original study in older community-dwellers without diagnosis of dementia, which gait parameters, among slower gait speed, higher stride time variability (STV) and Timed Up & Go test (TUG) delta time, were most strongly associated with lower performance in two cognitive domains (i.e., episodic memory and executive function); and 2) to quantitatively synthesize, with a systematic review and meta-analysis, the association between gait performance and cognitive decline (i.e., mild cognitive impairment (MCI) and dementia). Methods: Based on a cross-sectional design, 934 older community-dwellers without dementia (mean6standard deviation, 70.3 64.9years; 52.1% female) were recruited. A score at 5 on the Short Mini-Mental State Examination defined low episodic memory performance. Low executive performance was defined by clock-drawing test errors. STV and gait speed were measured using GAITRite system. TUG delta time was calculated as the difference between the times needed to perform and to imagine the TUG. Then, a systematic Medline search was conducted in November 2013 using the Medical Subject Heading terms "Delirium," "Dementia," "Amnestic," "Cognitive disorders" combined with "Gait" OR "Gait disorders, Neurologic" and "Variability." Findings: A total of 294 (31.5%) participants presented decline in cognitive performance. Higher STV, higher TUG delta time, and slower gait speed were associated with decline in episodic memory and executive performances (all P-values <0.001). The highest magnitude of association was found for higher STV (effect size = -0.74 [95% Confidence Interval (CI): -1.05;- 0.43], among participants combining of decline in episodic memory and in executive performances). Meta-analysis underscored that higher STV represented a gait biomarker in patients with MCI (effect size = 0.48 [95% CI: 0.30;0.65]) and dementia (effect size = 1.06 [95% CI: 0.40;1.72]). Conclusion: Higher STV appears to be a motor phenotype of cognitive decline. © 2014 Beauchet et al

    Characterizing functional connectivity patterns during saliva swallows in different head positions

    Get PDF
    Background: The anatomical rationale and efficacy of the chin tuck in improving airway protection for some people with swallowing disorders have been well researched and established. However, there are still open questions regarding whether brain activity for swallowing control is altered while performing this chin-tuck maneuver. Methods: In this study, we collected EEG signals from 55 healthy adults while swallowing in the neutral and chin-tuck head positions. The time-frequency based synchrony measure was used to form brain networks. We investigated both the small-world properties of these brain networks and differences among the constructed brain networks for the two head positions during swallowing tasks. Results: We showed that brain networks for swallowing in both head positions exhibit small-world properties. Furthermore, we showed that swallowing in the chin-tuck head position affects brain networks in the Alpha and Gamma frequency bands. Conclusions: According to these results, we can tell that the parameter of head position should be considered in future investigations which utilize EEG signals during swallowing activity

    The effects of increased fluid viscosity on swallowing sounds in healthy adults

    Get PDF
    Background: Cervical auscultation (CA) is an affordable, non-invasive technique used to observe sounds occurring during swallowing. CA involves swallowing characterization via stethoscopes or microphones, while accelerometers can detect other vibratory signals. While the effects of fluid viscosity on swallowing accelerometry signals is well understood, there are still open questions about these effects on swallowing sounds. Therefore, this study investigated the influence of fluids with increasing thickness on swallowing sound characteristics.Method: We collected swallowing sounds and swallowing accelerometry signals from 56 healthy participants. Each participant completed five water swallows, five swallows of nectar-thick apple juice, and five swallows of honey-thick apple juice. These swallows were completed in neutral head and chin-tuck head positions. After pre-processing of collected signals, a number of features in time, frequency and time-frequency domains were extracted.Results: Our numerical analysis demonstrated that significant influence of viscosity was found in most of the features. In general, features extracted from swallows in the neutral head position were affected more than swallows from the chin-tuck position. Furthermore, most of the differences were found between water and fluids with higher viscosity. Almost no significant differences were found between swallows involving nectar-thick and honey-thick apple juices. Our results also showed that thicker fluids had higher acoustic regularity and predictability as demonstrated by the information-theoretic features, and a lower frequency content as demonstrated by features in the frequency domain.Conclusions: According to these results, we can conclude that viscosity of fluids should be considered in future investigations involving swallowing sounds. © 2013 Jestrovićet al.; licensee BioMed Central Ltd

    Motor imagery of gait: A new way to detect mild cognitive impairment?

    Get PDF
    Objectives. 1) To measure and compare the time required to perform (pTUG) and the time required to imagine (iTUG) the Timed Up & Go (TUG), and the time difference between these two tasks (i.e., TUG delta time) in older adults with cognitive decline (i.e., mild cognitive impairment (MCI) and mild-to-moderate Alzheimer disease and related disorders (ADRD)) and in cognitively healthy individuals (CHI); and 2) to examine any association between the TUG delta time and a cognitive status. Methods. Sixty-six participants (24 CHI, 23 individuals with MCI, and 19 individuals with ADRD) were recruited in this cross-sectional study. The mean and standard deviation of the pTUG and iTUG completion times and the TUG delta time, as well as age, gender, and Mini-Mental State Examination (MMSE) scores were used as outcomes. Participants were separated into three groups based on the tertilization of TUG delta time: lowest (52.2%; n = 22, worst performance). Results: Fewer CHI were in the group exhibiting the highest tertile of TUG delta time compared to individuals with lowest and intermediate TUG delta times (p = 0.013). Being in the highest tertile of the TUG delta time was associated with cognitive decline in the unadjusted model (p = 0.012 for MCI, and p = 0.021 for mild-to-moderate ADRD). In the multivariate models, this association remained significant only for individuals with MCI (p = 0.019 while adjusting for age and gender; p = 0.047 while adjusting for age, gender, and MMSE score; p = 0.012 for the stepwise backward model). Conclusions: Our results provide the first evidence that motor imagery of gait may be used as a biomarker of MCI in older adults. © 2014 Beauchet et al.; licensee BioMed Central Ltd

    A Study of Brain Networks Associated with Swallowing Using Graph-Theoretical Approaches

    Get PDF
    Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI) was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, 23.1±1.52 years of age). To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia. © 2013 Luan et al

    A comparative analysis of swallowing accelerometry and sounds during saliva swallows

    Get PDF
    Background: Accelerometry (the measurement of vibrations) and auscultation (the measurement of sounds) are both non-invasive techniques that have been explored for their potential to detect abnormalities in swallowing. The differences between these techniques and the information they capture about swallowing have not previously been explored in a direct comparison. Methods: In this study, we investigated the differences between dual-axis swallowing accelerometry and swallowing sounds by recording data from adult participants and calculating a number of time and frequency domain features. During the experiment, 55 participants (ages 18-65) were asked to complete five saliva swallows in a neutral head position. The resulting data was processed using previously designed techniques including wavelet denoising, spline filtering, and fuzzy means segmentation. The pre-processed signals were then used to calculate 9 time, frequency, and time-frequency domain features for each independent signal. Wilcoxon signed-rank and Wilcoxon rank-sum tests were utilized to compare feature values across transducers and patient demographics, respectively. Results: In addition to finding a number of features that varied between male and female participants, our statistical analysis determined that the majority of our chosen features were statistically significantly different across the two sensor methods and that the dependence on within-subject factors varied with the transducer type. However, a regression analysis showed that age accounted for an insignificant amount of variation in our signals. Conclusions: We conclude that swallowing accelerometry and swallowing sounds provide different information about deglutition despite utilizing similar transduction methods. This contradicts past assumptions in the field and necessitates the development of separate analysis and processing techniques for swallowing sounds and vibrations

    Cognitive tasks during walking affect cerebral blood flow signal features in middle cerebral arteries and their correlation to gait characteristics

    Get PDF
    Gait is a complex process involving both cognitive and sensory ability and is strongly impacted by the environment. In this paper, we propose to study of the impact of a cognitive task during gait on the cerebral blood flow velocity, the blood flow signal features and the correlation of gait and blood flow features through a dual task methodology. Both cerebral blood flow velocity and gait characteristics of eleven participants with no history of brain or gait conditions were recorded using transcranial Doppler on mid-cerebral artery while on a treadmill. The cognitive task was induced by a backward counting starting from 10,000 with decrement of 7. Central blood flow velocity raw and envelope features were extracted in both time, frequency and time-scale domain; information-theoretic metrics were also extracted and statistical significances were inspected. A similar feature extraction was performed on the stride interval signal. Statistical differences between the cognitive and baseline trials, between the left and right mid-cerebral arteries signals and the impact of the antropometric variables where studied using linear mixed models. No statistical differences were found between the left and right mid-cerebral arteries flows or the baseline and cognitive state gait features, while statistical differences for specific features were measured between cognitive and baseline states. These statistical differences found between the baseline and cognitive states show that cognitive process has an impact on the cerebral activity during walking. The state was found to have an impact on the correlation between the gait and blood flow features
    corecore